US009146908B2

a2 United States Patent

Baldwin et al.

US 9,146,908 B2
Sep. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54) VALIDATING AN XML DOCUMENT

(75) Inventors: Timothy J. Baldwin, Southampton
(GB); Duncan G. Clark, Hampshire
(GB); Xin Peng Liu, Beijing (CN); Xi
Ning Wang, Beijing (CN); Liang Xue,
Beijing (CN); Yu Chen Zhou, Beijing
(CN)

(73) INTERNATIONAL BUSINESS

MACHINES CORPORATION,

Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 1730 days.

@
(22)

Appl. No.: 12/507,261

Filed: Jul. 22, 2009

Prior Publication Data

US 2010/0023471 Al Jan. 28, 2010

(65)

(30) Foreign Application Priority Data

.......................... 2008 1 0134072

Jul. 24,2008 (CN)
(51) Int.CL

GOGF 17/00
GOGF 17/22
GOGF 17727
GOGF 17/28
GOGF 17/30
GOGF 19/00

USS. CL

CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2011.01)
(52)
GOGF 17/2247 (2013.01); GO6F 17/2725
(2013.01); GO6F 17/227 (2013.01); GO6F
17/2872 (2013.01); GOG6F 17/30569 (2013.01):
GOGF 17/30905 (2013.01); GOGF 19/707

(58) Field of Classification Search

CPC GOGF 17/2247, GOG6F 17/2725; GOGF
17/227; GOGF 17/30569; GOGF 17/30905;

GOGF 17/2872; GOGF 19/707

USPC i 715/234-239

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2004/0021679 Al* 2/2004 Chapmanetal. 345/700

2005/0039124 Al* 2/2005 Chuetal. 715/531

2005/0097455 Al* 52005 Zhouetal. 715/513

2005/0246159 Al* 112005 Perlaetal.cccocevveeenn. 704/8
(Continued)

FOREIGN PATENT DOCUMENTS

CN 1704932 A 12/2005
JP 11-250483 A 3/2001
OTHER PUBLICATIONS

Rick Jelliffe “The Schematron Assertion Language 1.6” Published
Oct. 1, 2002—pp. 1-32.*

(Continued)

Primary Examiner — Quoc A Tran

(74) Attorney, Agemt, or Firm—Lee Law, PLLC;
Christopher B. Lee
57 ABSTRACT

At least one XML document to be validated is parsed, and
XML data in the at least one XML document is represented as
data objects in at least one data object model in a memory. At
least one rule document is parsed and a rule object model is
created in the memory. At least part of the data objects are
extracted from the at least one data object model and at least
part of rule objects are extracted from the rule object model.
Validation is performed in a corresponding execution context
for the extracted at least part of the data objects based upon the
extracted at least part of the rule objects.

23 Claims, 6 Drawing Sheets

(2013.01)
101
XML DOC2

oot
XML DOC3
101

XML PARSER
104

XML DATA
OBJECT MODEL
105

;

VALIDATION ENGINE 103
RULE CONTEXT CONTEXT
POPULATOR 111 REGISTRY 118

USER DEFINED RULE EXECUTION
FUNCTION 114 CONTEXT 112

XML DATA
EXTRACTOR 108

USER INTERFACE

Y

l 109

Y
RULE SELECTION

RULE MATCHER
113
MODULE 110

RULE OBJECT
SCHEMATRON MODEL 107
DOC1 102
SCHEMATRON

RULE PARSER
DOC2 162

—

OQUTPUT GENERATOR OUTPUT
REGISTRY 115 GENERATOR 116

106
SCHEMATRON
DOC2 102

VALIDATION REPORT
17

US 9,146,908 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0278270 Al* 12/2005 Carretal. ..o 706/25
2006/0117307 Al* 6/2006 Averbuch et al. 717/143

2008/0082959 Al* 4/2008 Fowler 717/104
2008/0104579 Al* 5/2008 Hartmann ... 717/136
2009/0265378 Al* 10/2009 Dahletal. .. 707/103 R
2012/0216111 Al* 82012 Sulistioetal. 715/235

OTHER PUBLICATIONS

Leigh Dodds, Schematron: Validating XML Using XSLT, Website/
page http://www.ldodds.com/papers/schematron_ xsltuk html,
Printed from website on Oct. 6, 2008, pp. 1-21, Bath University,
Published on the World Wide Web.

Eric Armstrong, A Simple Collaboration System (Proposal),
Website/page http://www.treelight.com/software/collaboration/
SimpleSystem.html, Printed from website on Oct. 6, 2008, pp. 1-13,
Treelight Software, Published on the World Wide Web.

Author Unknown, Topologi Schema Documentation Tool, Website/
page http://www.topologi.com, Printed from website on Oct. 6, 2008,
pp. 1-3, Topologi Pty. Limited, NSW, Australia, Published on the
World Wide Web.

Author Unknown, Program (xml.php), Website/page http://
www2007.org/program/xml.php, Printed from website on Oct. 6,
2008, pp. 1-191, World Wide Web Conference 2007, Canada, Pub-
lished on the World Wide Web.

Rick Jelliffe, The W3C XML Schema Specification in Context,
Website/page http://’www.xml.com/pub/a/2001/01/10/
schemasincontext.html?page=5, Printed from website on Oct. 6,
2008, pp. 1-4, O’Reilly Media, Inc., Published on the World Wide
Web.

Eddie Robertsson, An Introduction to Schematron, Website/page
http://www.xml.com/Ipt/a/1318, Printed from website on Oct. 6,
2008, pp. 1-10, O’Reilly Media, Inc., Published on the World Wide
Web.

Chimezie Ogbuji, Validating XML with Schematron, Website/page
http://www.xml.com/Ipt/a/687, Printed from website on Oct. 6, 2008,
pp. 1-6, O’Reilly Media, Inc., Published on the World Wide Web.

* cited by examiner

US 9,146,908 B2

Sheet 1 of 6

Sep. 29, 2015

U.S. Patent

0S
Hoday uoliepiiep

o¥y
uawinooq TNX

A

0
uswINoog e

1 "Old

JISX'JOTEPIEA

0c
swinoog

ISX"UoHBWBYOS

A

09

auibug 1ISX

0l
1UBWIN00(Q

uo4JeWBYOS

US 9,146,908 B2

Sheet 2 of 6

Sep. 29, 2015

U.S. Patent

¢ 'Old

0€S
s108{qo ajni jo ued 1ses)
1e 8y} pue s1098[qo elep jo ved 1ses| 1 ayl 10} IX8juoo
uoinoaxs Buipuodsaliod e ul uonepijea wiopad

STA
s102lqo ajni jo pyed jse9) 1k oesxs

171 833

s109lgo elep jo ped ises| 1e 10elxg

A

0¢s
[opouw 108iqo sjni e Buijeslo pue
JUBWINOOoP BN SUO 5B Ik 8sied

0is

|opow 109[qo elep suo 1SEs| 1B SE JusWNoop
8y} Ul Blep NX 1uesaidal pue ‘palepieA
8Q 0] JUSLINOOP WX SUO ISBS| Je asied

US 9,146,908 B2

Sheet 3 of 6

Sep. 29, 2015

U.S. Patent

€ Old

Lil

1d0d3d NOILLYAITVA

9L 1 HOLVHINTO

Sl AYLSIOFY

¢0l ¢00d
NOYLVINIHOS

¢0l ¢00d
NOHLVINIHOS

20l 100d
NOYLVINIHOS

1Nd1no HOLVHEIANTD 1NdLNO
i 901 >
HIASHYD T1INY |-
0L} ITNAON F
NOILOI1ES 31NN
/01 713a0n
0 193rgo 31Ny
gLl
HIHOLYN IINY 601 A
JOVAHILNI ¥3ISN «
| 801 HOLOVHLIXT
Y v.Lva TNX
ZLL IX3INOD L1 NOILONNA «
NOILND3AX3 31Ny a3aNI43a ¥3sn 0T
)) J3AOW 103rgo
_ YLVa TAX
8Ll AHLSIDAY L1 WOLYINdOd | | A
IX3INOD “® 1xaINoD 31NN b0l >
A UISUV TNX [«

€01 INIONT NOILYAITVvA

LOL

€004a TNX

L0}

¢004d TNX

(1017

1000 TAX

US 9,146,908 B2

Sheet 4 of 6

Sep. 29, 2015

U.S. Patent

\S5=pl) <A¥-OERY deppgaidn @
3 B8

runaedssuenabie) B

R 2

S0fIEsee B

penEiE 8

,J0gaDYR 258G,
{E9=p} <AhpedepyseHpE

{62=pt} usened
1 [p1]pelap DEqUsLNR B
ey SRRl @

o

poancy

M CO=Di} DG Bl s

US 9,146,908 B2

Sheet 5 of 6

Sep. 29, 2015

U.S. Patent

G 'Old

2

TTnames RESSV R
m 143ssy B [x
La3aIsNNN=SNLY1S®]L3SSV:IN3 1XALNOD o] .
w /SLASSYINT/FTAO TINTNT/STIAO TANT N/ ©:
e em e e e ee e neneeeernnne 304 B1[E]
L¥043d B[]
i O 1X3LNOD 5038 B][+]
w MOIHOWT LHOdFH[B][+]
YOANIZONYINNOOWILIANILOV.=SNLY.LSDILISSV:ING LXIINOO @)
A [SLISSVNI/FINO INF NI SIIAO NN . 310 B
U g w3 INOn T g ASSY
i 81X4INOO [IALLOV.=SNLVISBILISSYINT 31800 mmuu_.
/SLASSY:INT/ATA0TINTNT/STTAO TN NI/ "
" TNy B[]
...................................... NOILVAIfVA GIONVAGY 1388V 7 3RVN '@
NY3LLYd [B][-]
Ldod3u @]]
ty3assvB][x]
SWILIEWIAIAILOV=SNLVISBILISSYINT |y o) n ©
/SLASSYNF/AFA0TINTNT/STIAO TN TN/
310y [B][-]
NOILYQITVA 301¥d 1ISSY anvN @
... Nd3LLYd B][-]
{ VL1X3LNOD Lyod3u B][+]
/ 1y3assy e][+]
SLISSV:WI/IIAO NI NI/STIAOTINI WS/ LXIINOD ©)
S Fanu][]
NOILVQITYA INNOD S13SSY InvN @

N¥3LLVd [@][-]

US 9,146,908 B2

Sheet 6 of 6

Sep. 29, 2015

U.S. Patent

1|
gl¢ LNdLNO NOILND3AX3 < C12 10V4 3HL 7 @ .mu_u*
NOILYAITVA FHL 31VvE3INID OL A3NHOINOD HOIEM
* SATNY FHL INSHO4HEd
p1Z 1IX3 | [V
NIHL ‘a3dId Sl LS4 v 4l _ .
¢iZ IX3INOD LLZ AYLSIOaY
NOILNOEXE LXILNOD NO¥ IXIINOD
31Nd A31viNdod NOILND3XT I1NY LOVHLIXT
JHL H3A1LSID3INH
] ﬁ
012 1X31LNOD
602 T30 1L23rgo Ss3anyd NOLLND3XE I1NY
A31lvdITOSNOD FHL 31VINdOd AHL 2LVINdOd
80¢ ﬁ
SIATNH AHMVYSSIDIN FHL 1037138 €0z 3 LVAITvA 38 OL
+ SININTE 3HL LOVHLIX3
202 INFINND0A 90¢ T4AdOW 1D3rgo +
NOYLYWIHOS t—t S3TNY LV INdOd OL INFWND0A Z0Z 13aow 123argo
3SEVd Ol FLvd3ll NOYLYWNIHIOS AH.L 3Sdvd 139%vL I3HL 31LVINdOd
02 SOILNVINIS GOC FOVNONY L0 A3 LVvdITvA
SINIVHISNOD —® ONILOVHIX3 V1Vad TNX ONISN 39 OL JONVLSNI
dH1 ININE3 L34 SINIVHLISNOD FHL SS3HIX3 VY1vd 3HL 3NInNE31.3d

US 9,146,908 B2

1
VALIDATING AN XML DOCUMENT

RELATED APPLICATIONS

This application claims priority to and claims the benefit of
Chinese Patent Application Serial No. 200810134072.X
titled “METHOD AND SYSTEM FOR VALIDATING XML
DOCUMENT,” which was filed in the China Patent Office on
Jul. 24, 2008, and which is incorporated herein by reference
in its entirety.

BACKGROUND

The present invention relates to computer document pro-
cessing technology, and particularly relates to a method and
system for validating XML documents.

Standard Generalized Markup Language (SGML) is an
information management standard adopted by the Interna-
tional Organization for Standardization (ISO) for providing
platform- and application software independent documents.
In a document, format, index and links are maintained.
SGML provides a mechanism similar to a grammar for defin-
ing document structure and tags. The tags are used for repre-
senting format of different documents.

Extensible Markup Language (XML) is a standard lan-
guage suggested by W3C. It is a condensed format of SGML.
XML provides more flexibility for web developers and
designers to create customized marks, organize and represent
information. XML is used to exchange documents and data
for Service-Oriented Architecture (SOA) and Web services.
One of the advantages of XML as a format for data exchange
is the standardization of validation technology.

Many XML application developers expect that there is a
method to guarantee that all XML instances comply with
some specific rules, such as guaranteed validation processing.
Thus, many people directly seek help from schema language,
e.g. DTD, W3C XML Schema (WXS) and RELAX NG. The
effort may be performed by applying some rules to XML
instances.

Usually, validation technology includes a grammar based
validation method. As an alternative, Schematron is a struc-
tural validation language. Schematron allows to directly
express rules without the need to create a whole grammar
base. Tree patterns, defined as XPath expressions, are used to
make assertions, and provide user-centric reports about XML
documents. Expressing validation rules using patterns is
often easier than defining the same rule using a content
model. Tree patterns are collected together to form a Sche-
matron schema. Schematron is a useful tool for other schema
languages. Schematron is a useful tool to apply rules for an
XML document or validate with rules. Schematron is flexible,
and may be used to express different rules. Its expressing
capability may be more suitable than other schema languages
(e.g., DTD, W3C XML Schema (WXS), and RELAX NG).

Efforts were made by the industry and academia to imple-
ment Schematron. FIG. 1 shows a widely used and referenced
Schematron implementation method. One may refer to http://
www.schematron.com, which is a typical implementation
method with open source software, and is frequently used by
various projects. Schematron uses XML Stylesheet Lan-
guage For Transformation (XSLT), and defines a schema
language which, when transformed through a meta-style
sheet (i.e. a style sheet which generates other style sheets),
produces XSLT validation document. FIG. 1 shows the pro-
cess.

10

25

40

45

50

2

The web site http://www.ldodds.com/papers/schema-
tron_xsltuk.html also introduced Schematron and other
implementations based on XSLT.

Furthermore, the Community-driven Systems Manage-
ment in Open Source (COSMOS) project aims to provide
inter-operable tools for system management. The COSMOS
Resource Modeling sub-project aims to provide support for
building a common model to represent the information being
shared in a system management scenario. The project is using
SML and Schematron as the XML schema language to define
this common model. It uses the XSLT based approach and
skeleton1-5.xsl (http://xml.ascc.net/schematron/1.5/) refer-
ence implementation to extract the Schematron from the
schema.

SUMMARY

The above examples are all based on an XSLT approach.
According to embodiments of the present invention, a new
method and system for validating an XML document is pro-
vided. The method comprises parsing at least one XML docu-
ment to be validated, and representing XML data in the at
least one XML document as data objects in at least one data
object model in a memory; parsing at least one rule document
and creating a rule object model comprising rule objects in the
memory; extracting at least part of the data objects from the at
least one data object model and extracting at least part of the
rule objects from the rule object model; and performing vali-
dation in a corresponding execution context for the extracted
at least part of the data objects based upon the extracted at
least part of the rule objects.

According to another embodiment of the present invention,
a system for validating a XML document is provided. The
system comprises a memory; a data parsing module config-
ured to parse at least one XML document to be validated and
to represent XML data in the at least one XML document as
data objects in at least one data object model in the memory;
a rule parsing module configured to parse at least one rule
document and create a rule object model comprising rule
objects in the memory; an extracting module configured to
extract at least part of the data objects from the at least one
data object model and extract at least part of the rule objects
from the rule object model; and a validation module config-
ured to perform validation in a corresponding execution con-
text for the extracted at least part of the data objects based
upon the extracted at least part of the rule objects.

According to another embodiment of the present invention,
the at least one rule document comprises at least one Sche-
matron document, and the rule objects in the rule object
model maintain a hierarchical relationship corresponding to
elements in the at least one Schematron document. Each
element in the at least one XML document is mapped to a data
object in the at least one data object model, the data objects
maintain a hierarchical relationship corresponding to ele-
ments in the at least one XML document to be validated.

Where, at least part of rule objects are extracted from the
rule object model according to predefined rule extraction
criteria. At least part of data objects are extracted from the
data object model according to predefined data extraction
criteria.

According to a further embodiment of the present inven-
tion, the method further comprises: generating an execution
context for at least one rule object of the extracted at least part
of the rule objects, registering the execution context to a
context registry, and performing validation for the at least one
rule object in the execution context. An execution context for
one rule object of the extracted at least part of the rule objects

US 9,146,908 B2

3

may be searched from a context registry, and validation may
be performed for the one rule object in the execution context.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates an XSLT based XML document valida-
tion method with Schematron.

FIG. 2 illustrates a flowchart for XML document validation
method according to an embodiment of the present invention.

FIG. 3 illustrates a block diagram for XML document
validation system according to another embodiment of the
present invention.

FIG. 4 illustrates a rule object model in memory according
to an embodiment of the present invention.

FIG. 5 illustrates an execution context according to an
embodiment of the present invention.

FIG. 6 illustrates a flowchart for XML document validation
method according to a further embodiment of the present
invention.

DETAILED DESCRIPTION

FIG. 1 illustrates an XSLT based XML document valida-
tion method with Schematron. The examples described in the
background part are based on XSLT for XML document
validation which has the following limitations. XSLT based
Schematron validation will necessarily include the following
two-round processes, because the XSLT engine will process
documents with XL.ST grammar and cannot directly process
Schematron documents, only after a Schematron document is
transformed into an executable XSLT document can the
XSLT engine continue to execute the new transformed XSLT
document. In FIG. 1, Schematron document 10 as an XML
rule document will first be transformed into Schematron.xslt
document 20. The content in this new XSLT document is the
Schematron-defined rule.

The XML document validation process with Schematron is
divided into two procedures. The first procedure is transform-
ing a Schematron rule document into an intermediate docu-
ment, i.e. Validator.xslt document 30 by executing Schema-
tron.xslt document 20 in an XSLT engine 60. The second
procedure is executing the Validator.xslt document 30 in the
XSLT engine 60 to perform validation for XML document 40
to generate a final validation report 50.

A performance issue will be caused by the two rounds of
XSLT transformation. A Schematron schema is transformed
into an equivalent XSL.T document, and is commonly imple-
mented as a meta-style sheet, called skeleton. This skeleton is
applied to the Schematron schema and the resulting XSLT is
in turn applied to the XML instance document. Because there
are two rounds of transformations based on XSLT in the
validation process, the performance often becomes a critical
issue especially in some environments requiring real-time
processing, such as registry and repository with a large num-
ber of concurrent operations by end users and applications.

Such an XSLT based validation method lacks shareable
rule context. The contexts of each rule are not shareable, so
that many nodes are traversed more than once in the valida-
tion process. It is also another critical issue for performance.

It is difficult to achieve fail-fast validation with Schema-
tron. Fail-fast refers to a lightweight form of fault tolerance,
where an application or system service terminates itself
immediately upon encountering an error. Schematron valida-
tion based on XSLT transformation makes it difficult to
achieve fail-fast implementation due to the nature of XSLT.

10

15

20

25

30

35

40

45

50

55

60

65

4

Such an XSLT based method has matching problems gen-
erated by XSLT. Such problems usually exist in XSLT based
implementations. For example, when in the same pattern,
some rule context scopes overlap with each other, it will cause
more than one rule to be satisfied and get triggered. Using an
XSLT based implementation, each rule is represented as a
template; but for XSLT 1.0, if multiple templates are matched
at the same time, only one with the highest priority will be
called, with the others being ignored. XSLT 2.0 has the fea-
ture to do “match-next”, but still cannot completely solve the
problem. This defect makes a gap between the Schematron
specification and XSLT capability.

Such an XSLT based method makes it difficult to support
partial validation with fine grained assertions in a Schematron
document. Using an XSLT approach, the smallest unit of the
rule container to be selected in a Schematron document is a
“phase” element, where users or applications could not select
a finer grained unit, such as a rule or an assertion, for valida-
tion. It may cause a problem when there is a requirement to
validate XML documents with only a subset of a phase, for
example where a user selected rules or assertions, and rules or
assertions for a specific version or a section of a standards
specification such as WS-I BP, etc., let alone the other
advanced features for more flexible validation are used.

FIG. 2 illustrates a flowchart of an example XML docu-
ment validation method according to an embodiment of the
present invention. The method includes the following steps.
Atstep S10, parse at least one XML document to be validated,
and represent XML data in the document as at least one data
object model. The data object model may be created and
stored in memory, or may be created and stored with other
technology of hardware and/or virtual software convenient
for access. The data object model may adopt a tree structure,
e.g. Document Object Model (DOM). Every element in the
XML document may be mapped as a data object in the data
object model. The data objects may keep a corresponding
relationship with the elements in the XML document to be
validated.

At step S20, parse at least one rule document and create a
rule object model. The rule object model may be created and
stored in memory, or may be created and stored with other
technology of hardware and/or virtual software convenient
for access.

At step S15, extract at least part of data objects from the
data object model. The data object extraction criteria may be
predefined, and data objects may be automatically extracted
according to the criteria. The data object model may be pro-
vided to a user via a user interface. The user may select data
objects from the data object model. User defined functions
may also be used for extracting data objects.

Atstep S25, extract at least part of rule objects from the rule
object model. The rule object extraction criteria may be pre-
defined, and rule objects may be automatically extracted
according to the criteria. The rule object model may be pro-
vided to a user via a user interface. The user may select rule
objects from the rule object model. User defined functions
may also be used for extracting rule objects.

At step S30, perform validation in a corresponding execu-
tion context for the at least part of data objects and the at least
part of rule objects. The execution context may be predefined,
or generated according to a rule object and a data object to be
validated. A context registry may be maintained for storing
execution contexts for validation. An execution context for an
extracted rule object may be searched from the context reg-
istry, and validation for the rule object may be performed in
the execution context.

US 9,146,908 B2

5

According to one embodiment of the present invention, for
an XML instance document, validation may be performed
using all rules or part of the rules; and all or part of the data in
the XML instance document may be validated using all of the
rules or part of the rules. After data objects to be validated and
rule objects are determined, the validation process executes
the rule objects for the data objects to be validated in the
corresponding execution context.

According to another embodiment of the present invention,
the method further includes: generating an execution context
for at least one of the extracted rule objects, and registering
the execution context to a context registry, and performing
validation for the at least one rule object in the execution
context.

According to a further embodiment of the present inven-
tion, the data object model and the rule object model may be
created in memory. The rule document is a Schematron docu-
ment, and rule objects in the rule object model maintain a
hierarchical relationship corresponding to elements in the
Schematron document.

According to a further embodiment of the present inven-
tion, the method further includes stopping validation in
response to a fail-fast rule being triggered.

FIG. 3 illustrates a block diagram for an example XML
document validation system according to another embodi-
ment of the present invention. In FIG. 3, the XML document
101 comprises contents to be validated with a rule. For
example, the XML instance about a customer’s purchase
order to be validated is shown as the following.

<?xml version="1.0" encoding="UTF-8"?>
<employees xmlns="“http://example.ibm.com/employee”>
<employee serialNumber=“SOADC913247” sex="Female” title="Mr"
deptld="SOADC”>
<firstName>Chuan</firstName>
<lastName>WEN</lastName>
<assets>
<asset assetNumber=“P2PQH402” capitalizedDate=*2008-04-10"
status="active”>
<complianceInfo>
<check date="2008-01-10" standard="Sec300”
status="passed”/>
<check date="2008-02-18" standard="Sec400”
status="failed”/>
<check date="2008-03-22" standard="Sec800”
status="failed”/>
</complianceInfo>
<items>
<item partNum=“001-AA”>
<productName>PC</productName>

10

15

20

25

30

35

40

45

6

-continued

<quantity>1</quantity>
<price>13000.80</price>
</item>
<item partNum=“002-BB”>
<productName>keyboard</productName>
<quantity>1</quantity>
<price>288.88</price>
</item>
<item partNum=“003-CC”>
<productName>Monitor</productName>
<quantity>2</quantity>
<price>2000</price>
</item>
</items>
</asset>
<asset assetNumber=“A22J7602" capitalizedDate="2008-03-22"
status="unused”>
<unusedInfo reason="LowerPerformance”>
<detail>
The performance of this assset is very lower!
</detail>
</unusedInfo>
</asset>
</assets>
</employee>
</employees>

The data in the above XML instance includes an employee
with family name “WEN;,” given name “Chuan,” employee
number “SOADC913247,” sex ‘“Female,” and title “Mr.”
There are some assets information under the name of this
employee.

Schematron document 102 is for storing rules for validat-
ing the above XML document. Schematron language allows
for expressing rules directly to make sure that all XML
instances will follow specific rules. If rules are to be applied
to XML document contents or used for checking the docu-
ment, Schematron may be used. For example, different
authors submit documents to a company for publishing a
technical document. Editors want to check the submitted
documents with a set of rules to make sure that they comply
with editing requirements and may be correctly processed by
publishing tools.

In Schematron documents, declarations are used for defin-
ing various XML vocabularies and may be shared with vari-
ous XML based applications. The constraints rules include
XML Schema-based validation which is strictly a check for
format and correctness, but also includes complex application
logic for multiple XML documents. For example, the follow-
ing Schematron document may be used to express the rules to
validate the example XML document shown above.

<?xml version="1.0" encoding="“UTF-8” 7>
<schema xmlns="“http://purl.oclc.org/dsdl/schematron™>
<title>Employee and Asset<title>
<ns uri=“http://example.ibm.com/employee” prefix="em” />
<pattern name="Basic validation”>
<rule context="/em:employees/em:employee”>

<assert

test="(@sex="Male’ and @title="Mr") or (@sex="Female’ and (@title="Mrs’

or @title="Miss”))”>

The value of title does not match the value of sex.

</assert>

<assert test="@serialNumber and @deptld”>
Both serialNumber and deptld must be present.

</assert>

<report test="not(starts-with(@serialNumber,@deptld))”>
The serialNumber must starts with the deptId.

</report>
<frule>
</pattern>

<pattern name="Assets count validation”>

US 9,146,908 B2

-continued

<rule context="/em:employees/em:employee/em:assets”>
<assert test="count(em:asset[@status="active’]) >= 1>
Each employee should have at least one asset which status is active.
</assert>
<report test="count(em:asset) > 10>
Each employee should have at most ten assets.
</report>
</rule>
</pattern>
<pattern name="Asset price validation”>
<rule

context="/em:employees/em:employee/em:assets/em:asset[@status="active’)/em:items”>

<assert test="em:item”>

Each asset which status is active should have at least one item.
</assert>
<report

test="sum(em:item/em:price/text()) > 10000”>

For each employee, the sum of price of all the active assets can’t be greater

than 10000.
</report>
</rule>
</pattern>
<pattern name="Asset advanced validation”>

<rule context="/em:employees/em:employee/em:assets/em:asset[@status="active’]”>

<assert test="em:compliancelnfo”>
Each active asset must include the compliance check information.
</assert>
</rule>
<rule

context="/em:employees/em:employee/em:assets/em:asset[@status="active’)/em:complianceInfo/em:check™>

<report test="@standard="Sec300’ and not(@status="passed’)”>

If the check standard is “Sec300’, corresponding status must be ‘passed’.

</report>
<report test="@standard=‘Sec400’ and not(@status="passed’ or
(@status="uncertain’)”>

If the check standard is ‘Sec400’, corresponding status should be ‘passed’ or

‘uncertain’.
</report>
<report test="@standard="Sec800’ and @status="failed””>

If the check standard is ‘Sec800°, and corresponding status is present, the

status should be not “failed’.
</report>
</rule>
<rule

context="/em:employees/em:employee/em:assets/em:asset[@status="unused’]”>

<assert test="em:unusedInfo”>
The unused assets must include the unused information.
</assert>

<assert test="em:unusedInfo/@reason!=" or em:unusedInfo/detail/text()!1=""">
Asset[serial number: <value-of select="/@assetNumber”/>] is unused, but

has not unused reason or detail.
</assert>
</rule>
</pattern>
</schema>

The above Schematron document includes rules for vali-
dating the above XML document, e.g. the assertion
“(@sex="Male’ and @title="Mr’) or (@sex="Female’ and
(@title="Mrs’ or @title="Miss’))” for validating the title of
WEN Chuan in the above XML document is correct or not. If
the title is not correct, then output “The value of title does not
match the value of sex.”

A validation engine 103 performs the structure and content
constraints validation for the target XML object model by
using a rule object model. The validation engine 103 may
include some or all of the following modules. For example, a
user defined function 114 or an output generator registry 115
may be included or may not be included.

An XML Parser 104 is used to parse the XML document
101, and may be implemented by using different implemen-
tation languages (for example, Java, C#, etc). XML Parser
may be implemented as codes for reading a document and
parsing its contents. The XML parser 104 reads the XML

55

60

65

document 101, provides programmatic access to its XML
data, and consequently determines how this data may be
accessed or retrieved. Typically, it may be a Document Object
Model (DOM) Parser, Streaming API for XML (SAX) Parser,
etc.

The XML Parser 104 parses at least one of XML document
1, XML document 2 and/or XML document 3 to be validated,
and expresses the XML data as at least one XML data object
model. Every element in the XML document is mapped to a
data object in the data object model, and the data objects keep
hierarchical relationship corresponding to elements in the
XML document to be validated.

The XML Parser 104 may parse the XML document 101 to
be validated in memory, and store the XMI data object model
105 in memory. Thus, matching may be performed by using
data object model in memory to do refined matching. Valida-
tion for part of the XML document 101 may be performed

US 9,146,908 B2

9

according to user’s selection or predefinition. In other words,
validation for part of objects in XML data object model 105
may be performed.

The XML data object model 105, may be a document
object model (DOM) in which an XML document is usually
modeled as a node-labeled tree. Each element in the docu-
ment is mapped to a sub tree in the tree, which root node is
labeled with the tag of the element.

A rule parser 106 parses at least one rule document 102,
e.g. the Schematron document 1, Schematron document 2
and/or Schematron document 3 in FIG. 3, and creates a rule
object model 107. The rule object model may be created in
memory. The created rule object model 107 may be stored in
memory.

The rule parser 106 is used to parse the constraint rules
using the extended Schematron language. These constraint
rules may be formed as an XML document so that they may
be parsed by any XML parser. According to one embodiment
of the present invention, the Rule parser 106 is based on the
Document Object Model Application Programming Interface

10

15

10

(DOM API) to parse the constraint rules document into the
rule object model 107 in memory.

In a further embodiment of the present invention, the rule
document may be a Schematron document. The rule objects
in the rule object model 107 maintain a hierarchical relation-
ship corresponding to elements in the Schematron document.
The rule parser 106 parses the Schematron document accord-
ing to its grammar, and creates a corresponding rule object
model in memory. The Schematron document may be an
XML document by its nature. The Schematron document
may be first parsed with an XML DOM processing mecha-
nism, and then memory objects may be created according to
element names in the document. For example, if a parsed
XML original name is rule, then a corresponding rule object
model may be created. Because the elements in the Schema-
tron document have a hierarchical relationship, the corre-
sponding rule object model in memory will also maintain the
corresponding hierarchical relationship.

For example, the rule object model in FIG. 4 may be
created from the following Schematron document.

Schematron document:

<?xml version="1.0" encoding="“UTF-8” 7>
<schema xmlns="“http://purl.oclc.org/dsdl/schematron™>
<title>Employee and Asset<title>
<ns uri=“http://example.ibm.com/employee” prefix="em” />
<pattern name="Basic validation”>
<rule context="/em:employees/em:employee”>
<assert test="(@sex="Male’ and @title="Mr’) or (@sex="Female’ and
(@title="Mrs’ or @title="Miss”))”>
The value of title does not match the value of sex.

</assert>

<assert test="@serialNumber and @deptld”>
Both serialNumber and deptld must be present.

</assert>

<report test="not(starts-with(@serialNumber,@deptld))”>
The serialNumber must starts with the deptId.

</report>
</rule>
</pattern>

<pattern name="Assets count validation”>
<rule context="/em:employees/em:employee/em:assets”>
<assert test="count(em:asset[@status="active’]) >= 1>
Each employee should have at least one asset which status is active.

</assert>

<report test="count(em:asset) > 10>
Each employee should have at most ten assets.

</report>
<frule>
</pattern>

<pattern name="“Asset price validation”>

<rule

context="/em:employees/em:employee/em:assets/em:asset] @status="active’]/em:items”>
<assert test="em:item”>
Each asset which status is active should have at least one item.

</assert>
<report

test="sum(em:item/em:price/text()) > 10000”>
For each employee, the sum of price of all the active assets can’t be greater

than 10000.
</report>
<frule>
</pattern>

<pattern name="Asset advanced validation”>
<rule context="/em:employees/em:employee/em:assets/em:asset] @status="active’]”>
<assert test="em:complianceInfo”>
Each active asset must include the compliance check information.

</assert>
</rule>
<rule

context="/em:employees/em:employee/em:assets/em:asset[@status="active’)/em:complianceInfo/em:check™>
<report test="@standard="Sec300’ and not(@status="passed’)”>
If the check standard is *Sec300’, corresponding status must be ‘passed’.

</report>

<report test="@standard="Sec400’ and not(@status="passed’ or

US 9,146,908 B2

11

-continued

12

Schematron document:

(@status="uncertain’)”>

If the check standard is ‘Sec400’, corresponding status should be ‘passed’ or

‘uncertain’.
</report>
<report test="@standard="Sec800’ and @status="failed””>

If the check standard is ‘Sec800°, and corresponding status is present, the

status should be not “failed’.
</report>
</rule>
<rule

context="/em:employees/em:employee/em:assets/em:asset[@status="unused’]”>

<assert test="em:unusedInfo”>
The unused assets must include the unused information.
</assert>

<assert test="em:unusedInfo/@reason!=" or em:unusedInfo/detail/text()!1=""">
Asset[serial number: <value-of select="/@assetNumber”/>] is unused, but

has not unused reason or detail.
</assert>
</rule>
</pattern>
</schema>

The object in the rule object model maintains a correspond-
ing hierarchical relationship with elements in the above Sche-
matron document. For example, the object, schema Schema
(1d=35), in line 1 of FIG. 4 corresponds to the elements
starting from line 2 of the Schematron document, <schema
xmlns="http://purl.oclc.org/dsdl/schematron”>. The object
in line 4 of FIG. 4, [0] Pattern (id=79), corresponds to the
element, <pattern name="Basic validation”>, starting from
line 5 of the Schematron document. The object in line 11 of
FIG. 4, [0] Rule(id=95), corresponds to the element, <rule
context="/em:employees/em:employee”>, starting from line
6 of the Schematron document. The object in line 15 of FIG.
4, [0] Assertion(id=109), corresponds to the element starting
from line 7 of the Schematron document (e.g., <assert test="
(@sex="Male’ and @title="Mr’) or (@sex="Female’ and
(@title="Mrs’ or @title="Miss’))”> The value of title does
not match the value of sex. </assert>).

The rule object model 107 may represent an in-memory
model of rules, and may be created by the rule parser 106. The
core elements include a context element, a rule logic expres-
sion, and validation output, etc.

An XML data extractor 108 extracts nodes of XML docu-
ment object model tree. Xpath is a widely used language for
addressing parts of an XML document to extract a data object.
Xpath may be used as a stand-alone query language for XML,
and may also be used in a host language such as XQuery and
XSLT. For example, an XPath query includes a location path
and an output expression. The location path is a sequence of
location steps that specify the path from the document root to
a desired element. The output expression specifies the por-
tions or functions of a matching element that form the results.

A user interact module for data extracting, i.e. a user inter-
face 109, allows the user to select elements to be validated
from a target XML document. Samples of such data may be
elements of the same type, a sub tree of the whole DOM tree,
or a set of elements filtered using XPath pattern, etc. Such
information for data selection and/or selected data elements
may be passed to a rule selection module 110 for identifying
the fine grained units, such as rules or assertions, for partial
validation.

The rule selection module 110 interacts with an end user/
application (e.g., via the user interface 109) for selecting rules
to be used for validation. The information for rule selection
may be generated by a user, e.g. a user selection of the rules/

25

30

35

40

45

50

55

60

65

assertions to be used directly from U, or may be automati-
cally generated using the information of data selection from
the user interface 109 for data extraction. Additionally, the
information for rule selection is passed to the rule parser 106
for generating a rule object model to be used for validation.

A rule context populator 111 is for populating a rule execu-
tion context 112 of each rule. These contexts may be shared
by multiple rules which have the related execution scope.

The rule execution context 112 provides a concrete execu-
tion scope of each rule applied to a XML instance document.
These rule execution contexts may be marked as hierarchical
and shareable. For example, in FIG. 5, context A, B, C, and D
are examples of rule execution contexts that apply separately
for different rules. In FIG. 5, the context A is “po:order”
meaning all order elements under the root node. All rules of
the rule set A are evaluated under this context (all order
elements). Then the populated context A may be registered
into a context registry 118 of this validation process.

The context B is “.[@orderStatus=‘Paid’]”, meaning those
order elements that have a “paid” status. The scope of context
B may be evaluated based on the scope of the context A
instead of the root element of DOM tree. The scope of context
C also may be evaluated based on the scope of the context B
which denotes paid orders rather than all of the orders. The
context A and the context B may both be extracted from the
context registry of this validation process.

The rules under context A may be triggered under their
execution context (all the order elements). When the Context
B is populated, if there is no context hierarchy, these elements
may be determine form a root node instead of from already
populated order elements. According to one embodiment of
the present invention, the context B population may be based
on the achieved order elements (context A) instead of the
whole root node, to expedite the extracting process.

A rule matcher 113 is used to evaluate the assertions of
each rule under the current rule execution context. If the
evaluation is false, the rule will be triggered. For example, the
above rule (as following) describes that the sex and title of an
employee must be consistent, the employee must have a seri-
alNumber and department identifier (Id) and the serial num-
ber must start with the department Id.

US 9,146,908 B2

13

<rule context="/em:employees/em:employee”>
<assert
test="(@sex="Male’ and @title="Mr’) or
(@sex="Female’ and (@title="Mrs’ or @title="Miss’))”>
The value of title does not match the value of sex.
<fassert>
<assert test="@serialNumber and @deptld”>
Both serialNumber and deptld must be present.
<fassert>

Then, when these assertions are to be matched, the rule
matcher 113 will obtain DOM elements from the XML
instance document based on an Xpath expression, e.g., the
context attribute of an element rule “/em:employees/em:em-
ployee” Execution of the Xpath expression in the XML
instance may obtain the following element.

<employee serialNumber=“SOADC913247”
sex="FeMale” title="Mr"
deptld=“SOADC”>

<anloyee>

Then, match the first assertion, execute the attribute value*
(@sex="Male’ and @title="Mr’) or (@sex="Female’ and
(@title="Mrs’ or @title="Miss’))” on the above obtained
DOM element. Ifthe returned value is false, then the assertion
meets the condition and will be triggered with “The value of
title does not match the value of sex” as a validation result
output. When matching the second assertion, then execute
test attribute value “@serialNumber and @deptld.” The
returned value is true, thus the assertion does not meet the
condition and will not be triggered.

According to one embodiment of the present invention,
validation may be performed for the whole XML instance
document with all or part of the rules, or validation may be
performed for part of the XML instance document with all or
part of the rules. After data objects to be validated and rule
objects are determined, the validation process may be similar
to the above process, e.g., for the data objects to be validated,
to execute the rule objects in a certain execution context.

Regarding the user defined function 114, except for the
native XPath function, users may extend their customized
function to implement a special requirement. The user
defined function 114 is used to help extract data from XML
document, and also help populate the rule execution context
and evaluate the assertions of the rule.

An output generator registry 115 includes different output
generators that may be customized by users based on their
requirements.

A user-defined output generator 116 is for output defined
by a user, and is registered into the output generator registry
115 to help generate the validation report.

The validation report 117 is the final execution result of the
constraints rules applied to the XML document. The result
may be generated according to the user-defined output.

FIG. 6 illustrates a flowchart for an example XML docu-
ment validation method according to a further embodiment of
the present invention. The method includes the following
steps. Atstep 201, determine the data instance to be validated.
The XML instance document may be determined according
to real requirements and application logic which contain vari-
ous structure constraints or business control constraints, etc.

At step 202, populate the target object model. An XML
parser may be used to parse XML documents based on the

10

15

20

25

30

35

40

45

50

55

60

65

14
W3C DOM standard, represent XML data as an object tree in
memory, and provide an object-oriented interface to access
XML data object in the object tree.

At step 203, extract the elements, e.g., an XML data object,
to be validated using user-defined data extracting criteria. The
user may select the elements to be validated from a target
XML document according to user-defined data extracting
criteria. For example, some elements may be extracted which
have a same type from a whole DOM tree, etc.

At step 204, determine the constraints semantics, e.g.,
determine rules for validation. Based on the above achieved
XML data instance document, determine the real constraints
semantics. For example, peoples’ first names and last names
must be alphanumeric and cannot start with a digit.

At step 205, express the constraints using XML data
extracting language, e.g., XPath, etc., to form a Schematron
document. These constraints semantics may be expressed
using XML data extracting language, e.g. XPath 1.0. For
example, a constraint about “Can contain only alphanumeric
and can only start with an alphabet” may be expressed as the
following XPath statement:

not(normalize-space(translate(.,

NOPQRSTUVWXY Zabcdefgh
ijklmnopqrstuvwxyz0123456789°, “**)))

At step 206, parse the Schematron document to populate
the rules object model. In addition to step 205, this step parses
the constraints rules document according to related different
Schematron version parser, and then populates the rules
object model in memory which may be used to evaluate the
XML instance document.

At step 207, iterate to parse the Schematron document. If
these constraints are expressed as multiple separated rules or
these rules are based on different Schematron versions, then it
may repeat the execution of step 206.

At step 208, select the necessary rules. If a user just needs
part of the rules of the rules object model, the unused rules
objects may be filtered out from the entire parsed rules object
model. This step may help reduce the number of rules which
may be triggered so that the execution performance may be
improved. For example, if one Schematron rule document
contains the WSDL elements related rules and the XSD ele-
ments related rules, and the XML instance document only
contains the WSDL elements, then the XSD related rules of
the Schematron document need not be triggered and thus may
be filtered out. The filter rules may be based on the business
semantics or defined by a user.

At step 209, populate the consolidated rules object model.
Based on step 206 and step 208, a consolidated rules object
model including the appropriate rules may be obtained.

At step 210, populate the rule execution context. Each rule
has its execution context. This step is to help construct the
context of rules and maintain the context hierarchy. To popu-
late the rule execution context, it is first determined whether
the corresponding context for the rule exists in a rule context
registry; if yes, it is directly extracted for use; otherwise, the
context is calculated and registered into the context registry.

A detailed procedure may be based upon the following
method. Context CA, CB, CC and CD correspond to the
context of a rule set A, B, C and D. For example, context CA
may be expressed as “/em:employees/em:employee/em:as-
sets”, representing all the assets information under an
employee element. Then, rule set A may be executed for all
assets information in the context. The context may also be
registered to the context registry for reuse.

‘ABCDEFGHIJKLM-

US 9,146,908 B2

15

Context CB may be expressed as:

“/em:employees/em:employee/em:assets/em:asset
[@status="active’]”, representing all the assets information
with active status under an employee element. Context CD
may be expressed as “/em:employees/em:employee/em:as-
sets/em:asset| @status="unused’],” representing all the assets
information with unused status under an employee element.
The elements in context CB and CD may be based on one
subset of the context CA. Then, the context CA in the registry
may be used for calculating the context CB and CD.

Context CC may be expressed as:

“/em:employees/em:employee/em:assets/em:asset
[@status="active’|/em:compliancelnfo/em:check”, repre-
senting all the assets security checking information with
active status under an employee element. The elements in
context CC may be based on one subset of the context CB.
Then, the context CB in the registry may be used for calcu-
lating the context CC.

Atstep 211, extract rule execution context from the context
registry. If the rule execution context has already been popu-
lated, it may be extracted from the rules execution context
registry.

At step 212, register the populated rule execution context.
Ifthe rule execution context is populated for the first time, the
populated execution context may be registered into the con-
text registry for sharing and reuse.

Atstep 213, perform the rules which conformed to the fact.
Based on the populated context from step 210, this step is to
perform the concrete rules which conformed to the fact. When
apolicy is triggered, the corresponding output module will be
triggered.

Atstep 214, if one rule needing fail-fast mechanism is fired
(e.g., triggered), then this execution process exits.

At step 215, generate the validation execution output.
According to step 213, this step is to generate the validation
execution output according to a user-defined output format.

According to a further embodiment of the present inven-
tion, a system for validating an XML document is provided
and includes a memory. The system includes a data parsing
module configured to parse at least one XML document to be
validated, and to represent XML data in the document as at
least one data object model in the memory; a rule parsing
module configured to parse at least one rule document and
create a rule object model in the memory; an extracting mod-
ule configured to extract at least part of the data objects from
the data object model and extract at least part of the rule
objects from the rule object model; and a validation module
configured to perform validation in a corresponding context
for the at least part of data objects based upon the extracted at
least part of rule objects.

According to an embodiment, the rule document is a Sche-
matron document, and rule objects in the rule object model
maintain a hierarchical relationship corresponding to ele-
ments in the Schematron document.

According to an embodiment, each element in the XML
document is mapped to a data object in the data object model,
and the data objects maintain a hierarchical relationship cor-
responding to elements in the XML document to be validated.

According to an embodiment, the extracting module is
configured to extract at least part of rule objects from the rule
object model according to predefined rule extraction criteria.

According to an embodiment, the extracting module is
configured to extract at least part of data objects from the data
object model according to predefined data extraction criteria.

According to a further embodiment, the system may fur-
ther comprise an execution context generating module con-
figured to generate an execution context for at least one rule

10

15

20

25

30

35

40

45

50

55

60

65

16

object of the extracted rule object and register the execution
context to a context registry, and the validation module is
configured to perform validation for the at least one rule
object in the execution context.

According to yet another embodiment, the system may
further include a searching module configured to search an
execution context for one rule object of the extracted rule
objects from a context registry, and the validation module is
configured to perform validation for the one rule object in the
execution context.

According to an embodiment, the extracting module is
configured to extract at least part of the rule objects from the
rule object model and at least part of the data objects from the
data object model according to a predefined function.

According to an embodiment, the execution context gen-
erating module is configured to generate the execution con-
text for at least one rule object according to a predefined
function.

According to an embodiment, the validation module is
configured to stop validation in response to a fail-fast rule
being triggered.

According to embodiments of the present invention, the
method and system is provided for high performance and
flexible Schematron based XML validation. One embodi-
ment of the invention leverages data extracting and context
sharing. One step execution to avoid the two transformations
based on XSLT may be utilized, so that performance may be
improved. The context of rules is shareable, so that the rule
expressions may be read easily, and the execution scope of a
rule may be reduced. Then the performance of rule execution
may be improved. In one embodiment of the invention, the
shareable rule execution context is the concrete execution
scope of each rule applied to the XML instance document.
These rule execution contexts may be marked as hierarchical
and shareable.

According to an embodiment of the invention, based on an
in-memory rule object model and extended validation engine,
the fail-fast Schematron validation with high performance
may be achieved. The foundational XML data extracting and
XML parser may be used to implement the fail-fast mecha-
nism. The XSLT based implementation continues to execute
the transformation process in spite of the real execution situ-
ation.

According to an embodiment of the invention, a rule execu-
tion engine is optimized with sharable context and accurate
rule matching.

According to an embodiment of the invention, a flexible
mechanism is provided for partial validation by leveraging an
in-memory rule object model and XML data model for data
and rule extracting to use user-defined target XML elements
set and fine grained units in Schematron document (rule and
assertion). For example, a legacy system includes one previ-
ous Schematron compliant with version 1.5, while the newly-
created Schematron document which uses the ISO Schema-
tron version leverages the legacy Schematron 1.5 rules. In this
situation, the hybrid Schematron versions may work together.
It may impose a challenge to accommodate with the hybrid
Schematron rules which use different Schematron versions
for XSLT based Schematron implementation.

Flexible validation may be provided using selected fine
grained units of Schematron document. If a user just needs
part of the rules object model, the unused rules objects may be
filtered out from the entire parsed rules object model. This
step may help reduce the rules that will be triggered so that the
execution performance may be improved. Forexample, ifone
Schematron rule document includes WSDL elements related
rules and XSD elements related rules, and the XML instance

US 9,146,908 B2

17
document only contains the WSDL elements, the XSD
related rules of the Schematron document may be filtered out.
The filter rules may be based on the business semantics or
may be defined by a user.

The present invention also provides a storage media, which
comprises instructions for carrying out the method according
to the invention.

While the invention has been illustrated and described by
referring specifically to the preferred embodiments, those
skilled in the art will understand that various changes may be
made thereto both in form and detail without departing from
the spirit and scope of the invention.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain, or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electromag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s

20

30

40

45

50

55

18

computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer-readable medium that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable medium produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-

US 9,146,908 B2

19

age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur-
rently available types of network adapters.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art based upon the present description
without departing from the scope and spirit of the invention.
The embodiment was chosen and described to explain the
principles of the invention and the practical application, and
to enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica-
tions as suitable for a particular use contemplated.

What claimed is:
1. A method for validating an XML document, comprising:
parsing at least one XML, document to be validated and
representing XML data in the at least one XML docu-
ment as data objects in at least one data object model in
a memory;

parsing at least one rule document and creating a rule
object model comprising rule objects in the memory;

extracting part of the data objects from the at least one data
object model and extracting part of the rule objects from
the rule object model;

searching an execution context for at least one rule object

of the extracted part of the rule objects from a context
registry;

performing validation for the at least one rule object in the

execution context; and

performing a partial validation in a corresponding execu-

tion context comprising validating the extracted part of
the data objects based upon the extracted part of the rule
objects.

2. The method according to claim 1, where the part of the
rule objects are extracted from the rule object model accord-
ing to predefined rule extraction criteria.

3. The method according to claim 1, where the part of the
data objects are extracted from the data object model accord-
ing to predefined data extraction criteria.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

4. The method according to claim 1, further comprising:
generating the execution context for the at least one rule
object of the extracted part of the rule objects, register-
ing the execution context to the context registry.
5. The method according to claim 4, where generating the
execution context for the at least one rule object of the
extracted part of the rule objects comprises generating the
execution context for the at least one rule object of the
extracted part of the rule objects according to a predefined
function.
6. The method according to claim 1, further comprising
extracting the part of the rule objects from the rule object
model and the part of the data objects from the data object
model according to a predefined function.
7. The method according to claim 1, further comprising
stopping the partial validation in response to a fail-fast rule
being triggered.
8. The method according to claim 1, where the at least one
rule document comprises at least one Schematron document
and the rule objects in the rule object model maintain a hier-
archical relationship corresponding to elements in the at least
one Schematron document.
9. The method according to claim 1, where each element in
the at least one XML document is mapped to a data object in
the at least one data object model and the data objects main-
tain a hierarchical relationship corresponding to elements in
the at least one XML document to be validated.
10. A system for validating an XML document, compris-
ing:
a memory;
a data parsing module configured to parse at least one XML
document to be validated and to represent XML data in
the at least one XML document as data objects in at least
one data object model in the memory;
a rule parsing module configured to parse at least one rule
document and create a rule object model comprising rule
objects in the memory;
an extracting module configured to extract part of the data
objects from the at least one data object model and
extract part of the rule objects from the rule object
model,;
a searching module configured to search an execution con-
text for at least one rule object of the extracted part of the
rule objects from a context registry; and
a validation module configured to:
perform validation for the at least one rule object in the
execution context; and

perform a partial validation in a corresponding execu-
tion context comprising validating the extracted part
of'the data objects based upon the extracted part of the
rule objects.

11. The system according to claim 10, where the extracting
module is configured to extract the part of the rule objects
from the rule object model according to predefined rule
extraction criteria.

12. The system according to claim 10, where the extracting
module is configured to extract the part of the data objects
from the data object model according to predefined data
extraction criteria.

13. The system according to claim 10, further comprising:

an execution context generating module configured to gen-
erate the execution context for the at least one rule object
of the extracted part of the rule objects, and register the
execution context to the context registry.

14. The system according to claim 13, where the execution
context generating module is configured to generate the

US 9,146,908 B2

21

execution context for the at least one rule object of the
extracted part of the rule objects according to a predefined
function.

15. The system according to claim 10, where the extracting
module is configured to extract the part of the rule objects
from the rule object model and the part of the data objects
from the data object model according to a predefined func-
tion.

16. The system according to claim 10, where the validation
module is configured to stop the partial validation in response
to a fail-fast rule being triggered.

17. The system according to claim 10, where the at least
one rule document comprises at least one Schematron docu-
ment, and the rule objects in the rule object model maintain a
hierarchical relationship corresponding to elements in the at
least one Schematron document.

18. The system according to claim 10, where each element
in the at least one XML document is mapped to a data object
in the at least one data object model, and the data objects
maintain a hierarchical relationship corresponding to ele-
ments in the at least one XML document to be validated.

19. A computer program product comprising a non-transi-
tory computer readable storage medium including a computer
readable program code, where the computer readable pro-
gram code when executed on a computer causes the computer
to:

parse at least one XML document to be validated and to

represent XML data in the at least one XML document
as data objects in at least one data object model in a
memory;

parse at least one rule document and create a rule object

model comprising rule objects in the memory;

10

15

20

25

30

22

extract part of the data objects from the at least one data
object model and extract part of the rule objects from the
rule object model;

search an execution context for at least one rule object of

the extracted part of the rule objects from a context
registry;

perform validation for the at least one rule object in the

execution context; and

perform a partial validation in a corresponding execution

context comprising validating the extracted part of the
data objects based upon the extracted part of the rule
objects.

20. The computer program product of claim 19, where the
computer readable program code when executed on the com-
puter further causes the computer to extract the part of the rule
objects from the rule object model according to predefined
rule extraction criteria.

21. The computer program product of claim 19, where the
computer readable program code when executed on the com-
puter further causes the computer to extract the part of the
data objects from the data object model according to pre-
defined data extraction criteria.

22. The computer program product of claim 19, where the
at least one rule document comprises at least one Schematron
document, and the rule objects in the rule object model main-
tain a hierarchical relationship corresponding to elements in
the at least one Schematron document.

23. The computer program product of claim 19, where each
element in the at least one XML document is mapped to a data
object in the at least one data object model, and the data
objects maintain a hierarchical relationship corresponding to
elements in the at least one XML document to be validated.

#* #* #* #* #*

